×   HOME JAVA NETPLOT OCTAVE Traži ...
  matematika1
Formula za inverz matrice     LINEARNA ALGEBRA     Matrična jednadžba


Cramerovo pravilo

Cramerovim pravilom riješite sustav

$\displaystyle \begin{matrix}
2x_1 & + & x_{2} & + & x_{3} & = & 2, \\
x_{1}& +...
...2} & + & x_{3} & = & 3, \\
x_{1} & + & x_{2} & + & 2x_3 & = & -1.
\end{matrix}$

Rješenje. Matrica sustava $ A$ je kvadratna i regularna jer je

$\displaystyle \det A=\begin{vmatrix}
2 & 1 & 1 \\
1 & 2 & 1\\
1 & 1 & 2
\end{vmatrix}=8+1+1-2-2-2=4\neq0.$

Stoga prema [*] [M1, teorem 2.10] vrijedi

$\displaystyle x_i=\frac{D_i}{\det A},\quad i=1,2,3,$

gdje je

$\displaystyle D_1$ $\displaystyle =\begin{vmatrix}2 & 1 & 1 \\ 3 & 2 & 1\\ -1 & 1 & 2 \end{vmatrix} =8-1+3+2-2-6=4,$    
$\displaystyle D_2$ $\displaystyle =\begin{vmatrix}2 & 2 & 1 \\ 1 & 3 & 1\\ 1 & -1 & 2 \end{vmatrix} =12+2-1-3+2-4=8,$    
$\displaystyle D_3$ $\displaystyle =\begin{vmatrix}2 & 1 & 2 \\ 1 & 2 & 3\\ 1 & 1 & -1 \end{vmatrix} =-4+3+2-4-6+1=-8.$    

Slijedi

$\displaystyle x_1=\frac{4}{4},\quad x_2=\frac{8}{4},\quad x_3=\frac{-8}{4},$

pa rješnje sustava glasi

$\displaystyle \begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}=\begin{bmatrix}
1\\
2\\
-2
\end{bmatrix}.$