×   HOME JAVA NETPLOT OCTAVE Traži ...
  matematika1
Zadaci za vježbu     OSNOVE MATEMATIKE     LINEARNA ALGEBRA


Rješenja

1.
a)
$ x\in \langle-\infty,-\frac{1}{2}\rangle$ ,

b)
$ x\in \left[-\frac{3}{4},\frac{1}{2}\right]$ ,

c)
$ x\in \langle -\infty,-\frac{9}{2}\rangle$ .

2.
Vidi [*] [M1, poglavlje 1.4].

3.
Vidi [*] [M1, poglavlje 1.4].

4.
Vidi [*] [M1, poglavlje 1.4].

5.
$ x=10$ .

6.
$ \displaystyle {12\choose 6} \,\frac{a^{13}}{2^6}$ .

7.
a)
$ \displaystyle z_1+z_2=2,\, z_1-z_2=2-2i,\, z_1\cdot
z_2=1+2i,\, \frac{z_1}{z_2}= -1-2i$ .

b)
$ \displaystyle z_1+z_2=3-2i,\, z_1-z_2=1+2i,\, z_1\cdot
z_2=2-4i,\, \frac{z_1}{z_2}= \frac{2}{5}+\frac{4}{5}i$ .

8.
$ \mathop{\mathrm{Re}}\nolimits z=0,\,\mathop{\mathrm{Im}}\nolimits z=-1$ .

9.
t$ =2$ .

10.
$ \displaystyle z=-\frac{3}{13}+\frac{2}{13}i$ .

11.
$ z_1=2-i,\,z_2=-i$ .

12.
a)
$ 64\left(1+i\sqrt{3}\right)$ ,

b)
$ 1728\left(-1+i\sqrt{3}\right)$ .

13.
a)
$ \displaystyle z_0=\cos\frac{3\pi}{8}+i\sin\frac{3\pi}{8},\\ \\
z_1=\cos\frac{...
...pi}{8}+i\sin\frac{11\pi}{8},\\ \\
z_3=\cos\frac{15\pi}{8}+i\sin\frac{15\pi}{8}$ .

b)
$ \displaystyle
z_0=\sqrt[3]{2}\left(\cos\frac{\pi}{9}+i\sin\frac{\pi}{9}\right...
...ht),\\ \\
z_2=\sqrt[3]{2}\left(\cos\frac{13\pi}{9}+i\sin\frac{13\pi}{9}\right)$ .

14.
a)
$ \displaystyle
z_0=\frac{\sqrt 3}{2}+\frac{1}{2}i,\,
z_1=-\frac{\sqrt 3}{2}+\frac{1}{2}i,\,
z_2=-i$ .

b)
$ \displaystyle
z_0=\cos\frac{3\pi}{16}+i\sin\frac{3\pi}{16},\\ \\
z_1=\cos\fr...
...16}+i\sin\frac{19\pi}{16},\\ \\
z_3=\cos\frac{27\pi}{16}+i\sin\frac{27\pi}{16}$ .

c)
$ z_0=1,\,z_1=i,\,z_2=-1,\,z_3=-i$ .

d)
$ \displaystyle
z_0=\frac{1}{\sqrt[6]{2}}\left(\cos\frac{\pi}{2}+i\sin\frac{\pi...
...
z_2=\frac{1}{\sqrt[6]{2}}\left(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}\right)$ .

e)
$ \displaystyle z_0=\sqrt{3}-i,\, z_1=0,\, z_2=-\sqrt{3}-i,\, z_3=-\sqrt{3}-3i,\, z_4=-4i,\, z_5=\sqrt{3}-3i$ .

15.
a)
Vidi sliku 1.9.

Slika 1.9: Slika skupa $ \displaystyle \{(x,y)\in \mathbb{R}^2\colon x^2+(y-1)^2<1$ , $ (x-1)^2+y^2\leq 1\}$ .
\begin{figure}\begin{center}
\epsfig{file=osnove/vjezba116a.eps, width=6cm}\end{center}\end{figure}

b)
Vidi sliku 1.10.

Slika 1.10: Slika skupa $ \displaystyle \{(x,y)\in \mathbb{R}^2\colon x\leq 1-\frac {y^2}{4}\}$ .
\begin{figure}\begin{center}
\epsfig{file=osnove/vjezba116b.eps, width=5cm}\end{center}\end{figure}

c)
$ \mathbb{R}^2$ .

d)
Vidi sliku 1.11.

Slika 1.11: Slika skupa $ \displaystyle \{(x,y)\in \mathbb{R}^2\colon y\geq x+1\}$ .
\begin{figure}\begin{center}
\epsfig{file=osnove/vjezba116d.eps, width=5cm}\end{center}\end{figure}

e)
Vidi sliku 1.12.

Slika 1.12: Slika skupa $ \{(x,y)\in \mathbb{R}^2\colon \left (x+\frac {1}{\sqrt {2}}\right )^2+\left (y-\frac {1}{\sqrt {2}}\right )^2\leq \frac {1}{2}$ i $ y\leq x+\sqrt {2}\}$ .
\begin{figure}\begin{center}
\epsfig{file=osnove/vjezba116e.eps, width=6cm}
\end{center}\end{figure}

16.
$ \displaystyle z=\frac{1}{1+\sqrt{3}}-\frac{\sqrt{3}}{1+\sqrt{3}}\,i$ .

17.
$ z_0=1,\,z_1=i,\,z_2=-1,\,z_3=-i$ .

18.
$ \displaystyle
z_0=3,\,
z_1=-\frac{3}{2}+\frac{3\sqrt{3}}{2}\,i,\,
z_2=-\frac{3}{2}-\frac{3\sqrt{3}}{2}\,i$ .

19.
$ \displaystyle\{(x,y)\in\mathbb{R}^2\colon x=-\frac{y^2}{4}+\frac{y}{2}+\frac{3}{4}\}$ .


Zadaci za vježbu     OSNOVE MATEMATIKE     LINEARNA ALGEBRA